How to use the Extorr RGA Firmware

Here is the current state of the project to make the Extorr XT series RGA's respond to simple RS-232 commands and return data to any application. Basically you initialize (download a software file into) the CCU and then it will respond to ASCII commands to sweep and return data on the serial line. We loosely refer to this software as firmware. We have made a C# demo application that shows how to do this. It will download and start the CCU, provide a graphical interface to control scanning and a console window to display the ASCII sent and received. It will do sweeps and trends, the complete source for the demo (.cs files), makefile for the demo, and the firmware (qpbox.l2) are in the .zip attached. It would be expected at this point that someone wishing to use this firmware would be able to tell more by the demo source code than the following explanation which is only an outline.

How to use the Demo, RGA.exe

1. Extract ExtorrFirmwareSimpleAppVx.x.zip into a directory.

2. Run the program (double click) rga.exe. Go to the Operating Tab.

3. In the Communications box, select the Port of the CCU. You need not specify a speed yet. 9600 Baud will be used for booting.

4. When a Port is selected, the Boot button becomes active. Click it to download the firmware.

5. A dialog box comes up and shows you the download status. It goes away when the boot is finished.

6. When you select a Port and a Speed in the Communications box, the Open button becomes active. Click on it and the program opens the port. (You should select 57600 baud as the speed initially. This is a temporary constrait that will be changed soon.)

7. You can click on Refresh to verify that you are talking to the box. The firmware has a default value set for each parameter at this point, you need to set them accordingly before a sweep.

8. Once connected, you should be able to change baudrate by just selecting a different baudrate on an open connection.

The console window on the operating tab will show what is sent and rcvd on the serial line as the CCU is operating. It is pretty simple, you can set parameters, ask for data such as the total pressure, do a “sweep” from lomass to himass (data is stored in the CCU) and do a “stream” to get that data.

Notes
General
=======

- All communication to and from the CCU is line based. The CCU reads whole lines, and always sends whole lines. A user program is free to read character at a time or line at a time, but the CCU itself is line-based and most programs will probably deal with it by doing line at a time input and output

- The CCU receives lines from the controlling application, and does not echo the characters it receives, and it does not provide any facility to allow the user to edit a line.

- Generally speaking, the system revolves around a set of variables that the CCU defines. Examples are LowMass, HighMass, SamplesPerAmu, IonizerAmps, etc. When the controlling program sets the value of LowMass, the CCU remembers it and uses it for the low end of mass sweeps. The controlling program can also request the value of a variable, and it will be reported over the serial line. All variables can be read, and some variables can be set as well. Any attempt to access an unknown variable, or set the value of a read-only variable, results in an error message as described below. Some variables are simply remembered when set, and other variables cause various side-effects to occur. When a variable's value is queried, some variables just report the remembered value. Others do a real-time calculation to report the value. For example, the SupplyVolts variable reports the measured power supply voltage when its value is queried. It is an error to try to set this variable. Similarly, some variables cause live side-effects to occur when set. For example, the if you set the variable FilamentEmissionMa to 2.1, the CCU causes 2.1 milliamps to be the set point for the filament
emission.

- The specific format of the lines that are sent to the CCU and received from the CCU is designed to support both very simple interactions and more complicated interactions, in a syntactically consistent way. For both sending and receiving, lines consist of colon-separated fields, as described below.

Examples
========

Here are a few examples to see how things generally work, before the rules are described in more detail:

In order to set the variable LowMass to 15, you can just send the following to the CCU, on a line by itself:

 set:LowMass:15

If there are no problems, the CCU will respond as follows:

 ok:LowMass:17

To set a sequence of variables, you can send a sequence of command lines, as in

 set:LowMass:17
 set:HighMass:45
 set:SamplesPerAmu:12

and the CCU should respond

 ok:LowMass:17
 ok:HighMass:45
 ok:SamplesPerAmu:12

You can set more than one variable at a time on one command line. For example, you could accomplish the same set of variable assignments as follows:

 set:LowMass:17:HighMass:45:SamplesPerAmu:12

In that case, the CCU responds in exactly the same way:

 ok:LowMass:17
 ok:HighMass:45
 ok:SamplesPerAmu:12

You can query the value of a variable as follows:

 get:LowMass

and the CCU will respond as in

 ok:LowMass:17

Similarly, you can get the values of several variables by ganging the requests:

 get:LowMass:HighMass:SamplesPerAmu

and get

 ok:LowMass:17
 ok:HighMass:45
 ok:SamplesPerAmu:12

Errors
======

Sometimes when you set a variable, there will be a problem. Examples include setting the variable to an inappropriate value, and referring to an unknown variable. When this happens, the CCU will send an error message. For example, if you try to set the variable LowMass to 500, the CCU will respond with

 error:Value must be in the range [1..310]

If you have a sequence of gets or sets on one line, the CCU does each independently, and reports success or failure of each as it executes them. It does not short-circuit or terminate the sequence upon an error.

The specific error is described in text in the field after the error prefix. This text is free-formatted, but is guaranteed to not contain colon characters, and it will all be on one line.

The CCU is free to emit error messages at any time, either in response to your input or as a result of some serious failure that it must report. The set of error messages is anticipated to grow over time as the system evolves, and is open-ended.

Checksums
=========

All of the preceding examples have assumed that the communication line between the CCU and the controlling terminal is error free. For some applications, this assumption is reasonable for the reliability requirements and the environment of the equipment. But you can also use checksums going both ways to add a level of error detection. If you want to use checksums, you compute a checksum for the line you want to send, and send it along with the line as described below. When the CCU receives such a line, it verifies the checksum before using the line. If there is a checksum error, it doesn't use the line but instead issues an error message.

And critically, if you send a checksum as part of your command, the CCU will include a checksum with any response to that command. In this way, checksums are entirely optional, but they are enforced and responded to in kind when you provide them.

You communicate the checksum as in the following example:

 set:LowMass:21:ck:122

(The 122 is an example checksum value. I am not describing the checksum calculation here, nor putting in accurate checksums.)

When the CCU receives this and wants to report success, it will respond with something like

 ok:LowMass:21:ck:287

If there is a checksum error, it will report an error message using the normal mechanism, but will do so using a checksum, as in

 error:LowMass must be less than HighMass:ck:124

In general, a command line that is sent to the CCU, or data that comes from the CCU, is always a colon-delimited sequence of fields. The checksum occupies the last two field positions. The ck indicates checksum, and the value that follows is the actual checksum, written in base 10. The checksum applies to the line starting with the initial prefix, and continues up to the colon before the ck, the ck itself, and the colon after the ck.

Tags
====

Using a mechanism similar to checksums, the CCU supports a mode of operation that lets you more easily match specific responses from the CCU to specific queries that you have made. For a command line that you send, you can provide an optional numeric "tag" for that command line. Any response from the CCU to that command will repeat back to you that numeric tag, so your program can match the response to the particular command that generated the response. For example, if you send

 set:LowMass:17:HighMass:45:SamplesPerAmu:12:tag:12345

the system will respond as follows:

 ok:LowMass:17:tag:12345
 ok:HighMass:45:tag:12345
 ok:SamplesPerAmu:12:tag:12345

Here is a command that will generate some success and some error:

 get:LowMass:HighMass:Foobar:tag:234

to which the CCU may respond

 ok:LowMass:17:tag:234
 error:Foobar is not recognized:tag:234
 ok:HighMass:45:tag:234

You can combine tags and checksum if you wish:

 set:SamplesPerAmu:18:HighMass:44:tag:2:ck:99

and get

 ok:SamplesPerAmu:18:tag:2:ck:921
 ok:HighMass:44:tag:2:ck:27

Using tags, your controlling program is free to implement an increasing serial number for commands it sends, or to use it in any other way. The CCU will respond with the tag given, whether it is increasing or not.

Other prefixes
==============

So far we have seen the following prefixes used in the first position of command lines, either going to the CCU or coming from the CCU:

 get
 set
 ok
 error

The CCU provides other prefixes as well, and reserves the right to to add more in the future. It is a good idea to write your controlling program in such a way that it gracefully deals with prefixes from the CCU that it does not know about (perhaps by ignoring them).

In addition to the four prefixes listed above, the CCU will sometimes report the value of a variable of its own accord, such as

 inf:LowMass:15
 inf:InteriorDegC:4.534e1

When you try to set a variable and the value cannot be set, in addition to reporting an error as described previously, the CCU guarantees to send the current actual value via this informational report, after the
error message. For example, if you send

 set:LowMass:500

the CCU will respond as in

 error:Value must be in the range [1..310]
 inf:LowMass:17

Sweep data is communicated via the sweep prefix, as in

 sweep:3daj3jdadf4c3daj3jdadf4c3daj3jdadf4c3daj3jdadf4c3daj3jdadf4c

where the sweep data itself is encoded base64. The beginning of a sweep is reported as

 beginswp:LowMass:17:HighMass:45:SamplesPerAmu:12

followed by a sequence of sweep lines, and ending with

 endswp

Again, the system systematically responds in kind to both checksums and tags, so if you ask for a sweep and provide a checksum, the sweep information will be checksummed. Similarly for tags.

Finally, the CCU might emit a message using the msg prefix, for reports that might be useful to to display, but are not as severe as errors. Again, it can do this of its own accord.

IsIdle - Nonzero when the CCU is in the idle state (i.e. not sweeping)

 FirstSweep, LastSweep - The CCU numbers each sweep it does, starting with 1 for the first and increasing by one each time another sweep is started. These two variables record the sweep number of the first sweep recorded in memory, and the last sweep initiated.

 AutoSweep - Controls whether the CCU initiates streams of sweep data automatically, as detailed below. By default, set to one.

There are some new and extended commands as well:

 stop - Forces the system into the idle state. (Currently no button for this.)

 sweep:count:value - You can specify a count of sweeps to do. If you do not specify a count, the CCU will sweep continuously until stopped or until another sweep is commanded. The sweep data stored can be retrieved using the FirstSweep and LastSweep variables.

 stream:sweep:value - Here value specifies a sweep number. That sweep number is streamed. If it is no longer available, an error is emitted.

A few more details:

 - The CCU saves sweep data in a ring buffer, using the sweep_data[] array for storage. At any time the sweeps from FirstSweep to LastSweep will be in memory, and can be streamed using the stream command and specifying the sweep number.

 - When you start a sweep with different sweep parameters, the old data is discarded. If you start a sweep with the same parameters, the new data augments the old.

 - The data is stored in a ring buffer, with the oldest data dropping off. The sweep numbers increase regardless.
 - The AutoStream variable controls whether the CCU will initiate streams of its own accord. By default this is set to 1. When auto streaming, the CCU checks during low-priority thread idle time whether new sweep data is available. If so, it starts to stream the most recently-started stream.
To see the qpbox mass table, you can send "channel" all by itself:

 (send) channel
 (recv) ok:channel:0:amu:1.800:dwell:24.00:enabled:1
 (recv) ok:channel:1:amu:20.00:dwell:24.00:enabled:1
 (recv) ok:channel:2:amu:40.25:dwell:24.00:enabled:1
 (recv) ok:channel:3:amu:0.0:dwell:24.00:enabled:0
 (recv) ok:channel:4:amu:0.0:dwell:24.00:enabled:0
 (recv) ok:channel:5:amu:0.0:dwell:24.00:enabled:0
 (recv) ok:channel:6:amu:0.0:dwell:24.00:enabled:0
 (recv) ok:channel:7:amu:0.0:dwell:24.00:enabled:0
 (recv) ok:channel:8:amu:0.0:dwell:24.00:enabled:0
 (recv) ok:channel:9:amu:0.0:dwell:24.00:enabled:0
 (recv) ok:channel:10:amu:0.0:dwell:24.00:enabled:0
 (recv) ok:channel:11:amu:0.0:dwell:24.00:enabled:0

You can set a given channel as the following examples show:

 (send) channel:2:amu:40.25:dwell:72
 (recv) ok:channel:2:amu:40.25:dwell:72.00:enabled:1

 (send) channel:1:amu:1.8:dwell:144
 (recv) ok:channel:1:amu:1.800:dwell:144.0:enabled:1

 (send) channel:2
 (recv) ok:channel:2:amu:40.25:dwell:72.00:enabled:1

Each time it is sent, there response always shows the status of the indicated channel. As a special case, you can, as above, query a channel by just giving the channel number and no other parameters.

To do a Trend based on the channels that are set up, you send the "trend" command. There are no parameters for that. It all works with autosweep, streaming, etc.

 radius:number -- sets how many samples to take for max, number is [0..2]
 radius 0 means only the target amu.
 radius 1 means one extra sample on each side (+/-
0.25 amu)
 radius 2 means two extra samples on each side (+/-
0.25, +/- 0.50 amu)
 The default is radius 2, which makes 5 samples per
target altogether.

 size:number -- how many datasets to take per trend pass (default is one).

Trend collection and reporting is now much more like sweep collection than it was in the last version I sent you. The channel setup is exactly the same. But a trend pass now collects "size" datasets, analogous to the size of a sweep pass. If there are "size" datasets and "chan" active channels, then a trend pass will collect size*chan numbers. Each of these numbers will take a number of samples determined by "radius" and reduce it to a single number via max.

As far as the qpbox is concerned, these numbers are pretty much the same as the numbers in a sweep pass. So it reports them almost exactly the same way. The preamble BeginTrend line is unchanged from before, and communicates the same information. The actual trend data lines have changed, and now are exactly the same as the sweep lines, except they start with "t". See the picture.

You can control the number of samples per line reported using the same variable as for sweeps. This lets you get long lines and amortize the overhead, as you described. Also, when you have long lines you will get fewer firstSweep/lastSweep reports because there is more data in each sweep.

Examples:

 # When the "Refresh" button is pressed, the Gui sends
 # the "symbols" command, which causes the QpBox to dump
 # all of its symbols. (There are also commands to dump
 # a subset, and the "get" command can retrieve a single
 # variable
(send) symbols
(recv) ok:LowMass:1
(recv) ok:HighMass:7
(recv) ok:ScanSpeed:1.440000e2
(recv) ok:SamplesPerAmu:12
(recv) ok:AutoZero:0
(recv) ok:Filament:1
(recv) ok:MultiplierVolts:0
(recv) ok:EnableMultiplier:1
(recv) ok:FilamentEmissionMa:2.000000e0
(recv) ok:ElectronVolts:70
(recv) ok:Focus1Volts:-20
(recv) ok:SamplesPerLine:4
(recv) ok:Encoding:64
(recv) ok:BaudRate:57600
(recv) ok:Focus1Dac:3558
(recv) ok:Focus2Dac:2335
(recv) ok:EmissionSetpoint:6.600000e-1
(recv) ok:EmissionV330:6.600236e-1
(recv) ok:EmissionV330_2:2.949377e-1
(recv) ok:ElEnDac:2284
(recv) ok:Dwell:3
(recv) ok:MultVoltageDac:0
(recv) ok:MassDacInit:-1695634
(recv) ok:MassDacSlope:556369
(recv) ok:ResDacInit:40174772
(recv) ok:ResDacSlope:21644
(recv) ok:IonEnInit:144155456
(recv) ok:IonEnSlope:0
(recv) ok:DegasFocus2:500
(recv) ok:DegasElEn:373
(recv) ok:Samples:84
(recv) ok:DacPwmStep:400
(recv) ok:DegasToggle:52428
(recv) ok:FilProp:1.024000e3
(recv) ok:FilInteg:0.0e0
(recv) ok:FilDeriv:1.024000e4
(recv) ok:PiraniRoughCutoff:3.906958e-1
(recv) ok:GroundVolts:1.063574e-2
(recv) ok:ReferenceVolts:2.472744e0
(recv) ok:PiraniTorr:3.311098e-3
(recv) ok:PiraniOhms:1.168689e3
(recv) ok:PiraniTempVolts:-1.496283e-1
(recv) ok:SupplyVolts:2.394112e1
(recv) ok:QuadrupoleDegC:4.056715e1
(recv) ok:InteriorDegC:4.505009e1
(recv) ok:IonizerVolts:1.657761e0
(recv) ok:IonizerAmps:2.724062e0
(recv) ok:IonizerOhms:6.085619e-1
(recv) ok:RfAmpVolts:8.611454e-1
(recv) ok:SourceGrid1Ma:1.106263e0
(recv) ok:SourceGrid2Ma:8.937796e-1
(recv) ok:FilamentDacCoarse:3001
(recv) ok:FilamentDacFine:1684
(recv) ok:FilamentPowerPct:5.937500e1
(recv) ok:FbPlus:2.404652e0
(recv) ok:FbMinus:2.404357e0
(recv) ok:Focus1FB:-2.002023e1
(recv) ok:PiraniCorrVolts:-1.502823e-1
(recv) ok:RepellerVolts:-6.802916e1
(recv) ok:SerialNumber:1189
(recv) ok:ModelNumber:300
(recv) ok:PiraniZero:3.260200e-1
(recv) ok:Pirani1ATM:2.325000e0
(recv) ok:SwSettleTicks:10
(recv) ok:RfSettleTicks:50
(recv) ok:TotalOffset:2000
(recv) ok:PartialOffset:2000
(recv) ok:LowCalMass:1
(recv) ok:LowCalResolution:615
(recv) ok:LowCalIonEnergy:5.000000e0
(recv) ok:LowCalPosition:3.700000e-1
(recv) ok:HighCalMass:300
(recv) ok:HighCalResolution:1800
(recv) ok:HighCalIonEnergy:5.000000e0
(recv) ok:HighCalPosition:1.000000e-1

 # Here I used the Gui to set the SamplesPerLine variable,
 # which says how many floats to return on each sweep line.
(send) set:SamplesPerLine:5
(recv) ok:SamplesPerLine:5
(send) set:SamplesPerLine:6
(recv) ok:SamplesPerLine:6

 # Here I specified, in the Gui, simple base 10 floating format
 # for the reported data.
(send) set:Encoding:10
(recv) ok:Encoding:10

 # This is the sequence the Gui uses to do a sweep. First it retrieves
 # three relevant variables so it is sure it knows what they are, then
 # it issues the "sweep" command.
(send) get:ScanSpeed
(send) get:SamplesPerAmu
(send) get:LowMass
(send) get:HighMass
(send) sweep
 # The Gui just sends out the above commands, and doesn't wait for the individual
 # responses. (The QpBox has in input buffer of characters that permits this.)
 # Here are the responses to the above queries, including the actual sweep data.
 # The "s10" means sweep in format base 10. The next number is the sample number
 # of the first sample. This is related to amu but is more low level. There are things
 # we can discuss about this. The rest of the line is the actual number of samples specified,
 # separated by colons.
(recv) ok:ScanSpeed:1.440000e2
(recv) ok:SamplesPerAmu:12
(recv) ok:LowMass:1
(recv) ok:HighMass:7
(recv) inf:BeginSweepData
(recv) s10:0:1.264562e-12:1.397775e-12:1.404642e-12:1.346138e-12:1.171999e-12:8.440483e-13
(recv) s10:6:6.037157e-13:4.339721e-13:4.814894e-13:6.800729e-13:8.723390e-13:1.393655e-12
(recv) s10:12:2.056699e-12:2.589276e-12:2.899923e-12:2.981773e-12:2.954032e-12:2.776598e-12
(recv) s10:18:2.592022e-12:2.240725e-12:1.450785e-12:-3.103724e-14:-2.224794e-14:4.943987e-15
(recv) s10:24:-6.015185e-14:8.239979e-16:2.746659e-16:-1.263463e-14:-1.365090e-13:-1.565596e-14
(recv) s10:30:7.992780e-14:4.943987e-15:-4.669321e-15:-9.338642e-15:2.911459e-14:-3.570657e-14
(recv) s10:36:-5.136253e-14:1.181064e-14:-4.751720e-14:-5.493318e-16:2.471994e-14:3.845323e-14
(recv) s10:42:-1.620529e-14:5.822918e-14:1.483196e-14:4.751720e-14:-3.241058e-14:4.367189e-14
(recv) s10:48:-3.295992e-15:-2.197327e-14:-2.389594e-14:5.246119e-14:2.362127e-14:-6.674383e-14
(recv) s10:54:3.021325e-15:-1.977595e-14:-5.603186e-14:-6.866648e-15:1.977595e-14:-7.965311e-15
(recv) s10:60:-3.707990e-14:-4.147456e-14:-3.021325e-14:-6.839182e-14:8.239979e-16:3.955190e-14
(recv) s10:66:-1.702929e-14:-2.883993e-14:1.675462e-14:5.246119e-14:-7.415981e-14:-4.559455e-14
(recv) inf:EndSweepData

 # Here I use the gui to change to the new hex encoding. It is very simple, just 8 hex characters
 # for each 4-byte float. Unlike base 10, this is completely lossless of precision, and fairly simple.
 # Then I click "sweep" again.
(send) set:Encoding:16
(recv) ok:Encoding:16
(send) get:ScanSpeed
(send) get:SamplesPerAmu
(send) get:LowMass
(send) get:HighMass
(send) sweep
(recv) ok:ScanSpeed:1.440000e2
(recv) ok:SamplesPerAmu:12
(recv) ok:LowMass:1
(recv) ok:HighMass:7
(recv) inf:BeginSweepData
(recv) s16:0:2bac225c:2bc881f3:2bcb4a74:2bbaf07e:2ba9d09b:2b72d5f1
(recv) s16:6:2b464de2:2ade80b3:2b0da282:2b44c20b:2b79f2c6:2bc38561
(recv) s16:12:2c13b42a:2c2fc985:2c513485:2c59d840:2c4f99d6:2c466b92
(recv) s16:18:2c34b73f:2c1dfc77:2bbd69d2:a9220b89:a8a0cedf:290bc781
(recv) s16:24:290bc781:28a83ae1:29845b7f:259e5587:a8d73c47:a83712e6
(recv) s16:30:291a9f86:29b3fb3c:29c19693:a854c2f0:29e0834b:a8ad2d8c
(recv) s16:36:a9d5ff9a:29947031:2759b59b:27e39af5:283c0591:2745eaeb
(recv) s16:42:a9a52337:292ab439:299962dc:2905982c:285ea84a:28cd56ee
(recv) s16:48:2732203b:a9a5c18a:293e7ee9:28e39af5:29a20b89:a859b59b
(recv) s16:54:294c1a44:2986367f:a8d73c47:a86d804f:a99d18de:2986d4d6
(recv) s16:60:294c1a44:28d4c2f0:a8639af5:a90a8ad7:a8cfd045:29472795
(recv) s16:66:296d804f:295c2ef3:a832203b:a90bc781:292d2d8c:a9af088d
(recv) inf:EndSweepData

 # Now I use the gui to switch to base 64 encoding. I changed the concept slightly, and it
 # is consistent with the other formats. Like the others, there is always an integral number
 # of floats reported per line, specified by the SamplesPerLine variable. Unlike the others,
 # that sequence is returned all at once in base64, with no intervening colons. The data appears
 # in one field.
 #
 # So the user can make whatever tradeoff he wants. Base 10 is perhaps the simplest (if he has
 # scanf or similar. Base 16 is pretty simple as well, and information preserving. Base64 is
 # a little more complicated, but is the most compact.
(send) set:Encoding:64
(recv) ok:Encoding:64
(send) get:ScanSpeed
(send) get:SamplesPerAmu
(send) get:LowMass
(send) get:HighMass
(send) sweep
(recv) ok:ScanSpeed:1.440000e2
(recv) ok:SamplesPerAmu:12
(recv) ok:LowMass:1
(recv) ok:HighMass:7
(recv) inf:BeginSweepData
(recv) s64:0:+E+pK2GFwyvndc4r2i6uK0bGoSue/GIr
(recv) s64:6:Pmc7K8gp2Cog1gcrKr5BK/JmeCtS4sYr
(recv) s64:12:yngTLAPWMSylC1AsPkdULJ8qUSwy/UAs
(recv) s64:18:j8w5LH87HSxdY7grQ2TIqJEFvCdUWPwo
(recv) s64:24:6+pFKFRYfKiF6RapNkgjKJu1WadPgG0m
(recv) s64:30:gBEIKaVldyg81jWpOyAyqN/OoCgyS5ap
(recv) s64:36:6+pFqDsgMif2cnIphDMTqX6lgKjUQ4Ep
(recv) s64:42:UDZxqdeKCqieIeEoRzxXKfDCVCncYhko
(recv) s64:48:VFj8KDm0KqkxlZKpQ2TIqIdVnqbhOiio
(recv) s64:54:386gKYbEmKmJ5qOpNkgjqZEFPKg7IDIo
(recv) s64:60:MXCUJ5EFvCfXioqn3hidqTsgMig03Juo
(recv) s64:66:QPhAKZu1Wajpfr4o6+pFpztFsKlQNvGp
(recv) inf:EndSweepData

 # Here I use the gui to specify that 20 floats should be returned on each line. As you
 # can see, below, the lines get bigger. There is no built-in limit. The user can specify
 # get all the sweep data returned on a single line if he wants. The QpBox is happy to
 # do that. Or, the user can specify one data point per line. In whichever format.
(send) set:SamplesPerLine:20
(recv) ok:SamplesPerLine:20
(send) get:ScanSpeed
(send) get:SamplesPerAmu
(send) get:LowMass
(send) get:HighMass
(send) sweep
(recv) ok:ScanSpeed:1.440000e2
(recv) ok:SamplesPerAmu:12
(recv) ok:LowMass:1
(recv) ok:HighMass:7
(recv) inf:BeginSweepData
(recv) s64:0:3L+zK1nuwCu4Rc8rcVO7K7jGqSsleHYrJxoeK/Z15SqtYAgrBv1TK/XSfytdNcory1MVLAaSMiwmoU0sX/lULEcuUCy6N0gspok3LPRSHCw=
(recv) s64:20:4ZfCK47jMClPgG2of1uEqYdVnqUxcJSoniHhKOfIOinuVk0p6+rFJi/fjqk5tCqp1tQGKaVldyiMLS0ph1WeJfTkX6mRKropT4DtJjFwlCc=
(recv) s64:40:2UCOKaCNaKnhOqinpWX3p5lJ0qk7ILIn1R4DqevqRSigjWgog30PqYafGimHVZ6mpWX3KPWa4yjhOiioisGlKPMu3Kj2cnIolt3KKPZycig=
(recv) s64:60:LJiFqZu1WSdPgG2omUnSqOVcMylPgO2nN/4mqQAAAID2cnIpPoy5KEwUZqlUWHwo
(recv) inf:EndSweepData
(send) set:Encoding:16
(recv) ok:Encoding:16
(send) get:ScanSpeed
(send) get:SamplesPerAmu
(send) get:LowMass
(send) get:HighMass
(send) sweep
(recv) ok:ScanSpeed:1.440000e2
(recv) ok:SamplesPerAmu:12
(recv) ok:LowMass:1
(recv) ok:HighMass:7
(recv) inf:BeginSweepData
(recv) s16:0:2ba5b7a7:2bce4e55:2bc03253:2bb20c6e:2ba73998:2b7cf6a7:2b2f931a:2af71678:2af78d38:2b36aff0:2b7c93b4:2bc9a0ec:2c158545:2c34b24d:2c52fbb9:2c54e0a0:2c4f2808:2c42c469:2c3c8b29:2c1d3b7f
(recv) s16:20:2bb71ccd:2901e22b:28dea84a:28b98c3e:a93ac8e7:27ed804f:a964d79f:a8688da0:a9eba54e:a89e5587:a96d804f:292d2d8c:28cd56ee:a8f4ec51:287272f6:a891f6da:a84fd045:a9c234ea:a9c9a0ec:a8b2203b
(recv) s16:40:a8e39af5:280a8ad7:aa0548ff:2910ba30:291d18de:2969ca4e:a9db909c:a7bc0591:a98f7d83:a8aab439:287765a5:a59e5587:298d042f:2910ba30:2906d4d6:2891f6da:a90a8ad7:a7a83ae1:28b2203b:28e6144c
(recv) s16:60:283c0591:a9ad2d8c:a901e22b:28e1219e:a9147031:a9831ed5:26c5eaeb:a8831ed5:a8c37194:a92e6a3a:28f9def9:2983bd2c
(recv) inf:EndSweepData
(send) set:Encoding:10
(recv) ok:Encoding:10
(send) get:ScanSpeed
(send) get:SamplesPerAmu
(send) get:LowMass
(send) get:HighMass
(send) sweep
(recv) ok:ScanSpeed:1.440000e2
(recv) ok:SamplesPerAmu:12
(recv) ok:LowMass:1
(recv) ok:HighMass:7
(recv) inf:BeginSweepData
(recv) s10:0:1.256322e-12:1.371682e-12:1.417826e-12:1.340095e-12:1.180514e-12:8.467951e-13:6.245904e-13:3.452551e-13:5.092307e-13:7.336327e-13:8.544858e-13:1.438151e-12:2.145691e-12:2.552196e-12:2.959525e-12:2.969688e-12:2.975457e-12:2.677169e-12:2.647780e-12:2.158599e-12
(recv) s10:20:1.296149e-12:-1.235997e-14:-2.581860e-14:4.586921e-14:3.900256e-14:-2.114928e-14:3.021325e-15:-6.317317e-15:-8.432244e-14:7.113847e-14:1.318397e-14:1.428263e-14:-2.087461e-14:5.053853e-14:-2.032528e-14:-2.417060e-14:7.196247e-14:8.239979e-15:-4.202389e-14:-4.696788e-14
(recv) s10:40:1.029997e-13:-1.977595e-14:-2.005061e-14:-3.790390e-14:2.334660e-14:-2.087461e-14:8.239979e-15:4.751720e-14:-1.126130e-14:-3.158658e-14:7.031447e-14:1.867728e-14:-2.636793e-14:2.801593e-14:-2.197327e-14:4.065056e-14:-7.031447e-14:4.367189e-14:-3.845323e-14:-2.087461e-14
(recv) s10:60:3.845323e-14:1.647996e-15:2.636793e-14:-2.774125e-14:-1.510662e-14:1.400796e-14:3.488257e-14:-1.318397e-14:8.487178e-14:-8.514644e-15:-6.125050e-14:4.779188e-14
(recv) inf:EndSweepData

 # Here I use the gui to try to set the low mass to be greater than the high mass. The gui does
 # not catch this error, but relies on the QpBox to catch any errors. You can see here the
 # back-and-forth that happens. First an error is reported by the QpBox, then the QpBox emits
 # an informational response to say what the value in question actually is.
(send) set:LowMass:8
(recv) error: LowMass must be less than HighMass
(recv) inf:LowMass:1

 # Here I set a few variables. Among them is to return a single datum per line.
(send) set:ScanSpeed:24
(recv) ok:ScanSpeed:2.400000e1
(send) set:SamplesPerLine:1
(send) set:SamplesPerAmu:11
(recv) ok:SamplesPerLine:1
(recv) ok:SamplesPerAmu:11
(send) set:SamplesPerAmu:10
(recv) ok:SamplesPerAmu:10
(send) set:SamplesPerAmu:9
(recv) ok:SamplesPerAmu:9
(send) set:SamplesPerAmu:8
(recv) ok:SamplesPerAmu:8
(send) set:SamplesPerAmu:7
(recv) ok:SamplesPerAmu:7
(send) set:SamplesPerAmu:6
(recv) ok:SamplesPerAmu:6
(send) get:ScanSpeed
(send) get:SamplesPerAmu
(send) get:LowMass
(send) get:HighMass
(send) sweep

 # Here you see the data returned one datum per line.
(recv) ok:ScanSpeed:2.400000e1
(recv) ok:SamplesPerAmu:6
(recv) ok:LowMass:1
(recv) ok:HighMass:7
(recv) inf:BeginSweepData
(recv) s10:0:1.493875e-12
(recv) s10:1:1.546875e-12
(recv) s10:2:1.237359e-12
(recv) s10:3:7.100885e-13
(recv) s10:4:5.911690e-13
(recv) s10:5:9.966199e-13
(recv) s10:6:2.225980e-12
(recv) s10:7:3.136378e-12
(recv) s10:8:3.079774e-12
(recv) s10:9:2.717215e-12
(recv) s10:10:1.449445e-12
(recv) s10:11:8.099350e-14
(recv) s10:12:6.956740e-14
(recv) s10:13:7.690645e-14
(recv) s10:14:8.499263e-14
(recv) s10:15:8.305898e-14
(recv) s10:16:5.264797e-14
(recv) s10:17:5.985520e-14
(recv) s10:18:7.119341e-14
(recv) s10:19:8.718995e-14
(recv) s10:20:7.567596e-14
(recv) s10:21:7.488491e-14
(recv) s10:22:5.858075e-14
(recv) s10:23:3.858507e-14
(recv) s10:24:7.506071e-14
(recv) s10:25:7.066604e-14
(recv) s10:26:8.929939e-14
(recv) s10:27:7.220417e-14
(recv) s10:28:6.930371e-14
(recv) s10:29:6.526062e-14
(recv) s10:30:7.941141e-14
(recv) s10:31:5.836102e-14
(recv) s10:32:6.003099e-14
(recv) s10:33:7.053420e-14
(recv) s10:34:6.912791e-14
(recv) s10:35:8.108139e-14
(recv) inf:EndSweepData
How to build the Demo, RGA.exe
The file RGA.exe is the Demo, it can be built with Microsoft’s free version of Visual Studio Express.

I verified that rga builds fine with Visual Studio 2008 Express. No changes of any kind are necessary to the source tree.

In order to use Visual Studio 2008 Express, you will need to do the following:

 1. Download Visual Studio 2008 for C#

 2. Download Visual Studio 2008 for C++. (We do not use C++, but this gives you a convenient way to invoke a command shell with the environment variables set up for command-line builds.)

 3. Invoke Start
 Programs
 Microsoft Visual C++ 2008 Express Edition
 Visual Studio Tools
 Visual Studio 2008 Command Prompt

 4. Extract ExtorrFirmwareSimpleAppV0.3.zip into a directory. On a command line prompt in the directory type "nmake"

An rga.exe built this way will require .NET 3.5 installed on the computer.

 An rga.exe built using Visual Studio 2005 will require .NET 2.0.
Notes:

Initialize CCU (bootfirm.exe=bootfirm.cs+download.cs implements this)
The CCU (black electronics box) has to be initialized with the firmware each time it is powered up. This will change in the future to be stored into flash memory.

The firmware is currently in a file qpbox.l2. It consists of many packets of the form {data}.

The following steps are involved.

Reset the CCU

a. Send 1000 bytes 0x00 at 9600 baud

b. The CCU will respond with a character 0xAC every few seconds at 9600 Baud.
Send boot packets

Immediately after receiving character 0xAC, send boot record, exactly the first 2560 bytes of the firmware file. {Init1="~~~~~~~~`/Pwegf&&^BB^,&Eetc00"}
1st part boot packet ~1200 bytes

{Init2="~~~~~gdjvbuJI&gcggf77etc00"}
1st + 2nd boot packet =2560 bytes

The CCU will reply {Init=1} now boot code is running

Optionally change the Baudrate

Example: {PacNum=1,Baud=115200}
The CCU will reply {PacNum=1} at the original baudrate, then change to new baudrate for next packet

Send the Firmware

The firmware is loaded 1 packet at a time. (This is simply the remainder of the firmware file.) Each packet looks like:

{PacNum=2,Index=0, InitCCU="/P_`/Pwegf&&^BB^,&EBOnBp9d&,r/cF4rG!3n8,1255 bytes"}

CCU replies {PacNum=2}

And so on until the last firmware packet.

{PacNum=XXX,Index=258,InitCCU="/P_`/Pwegf&&^BB^,&EBnd&,r/cF4rG!3n8,1255 bytes"}

CCU replies {PacNum=XXX}

Start the Firmware

To start the firmware send: {Go}
{Hi}
reply from CCU, firmware is running.

